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We derive a consistent two-loop scaling picture for a Kondo dot in both equilibrium and nonequilibrium
situations using the flow equation method. Our analysis incorporates the important decoherence effects from
both thermal and nonequilibrium noise in a common setting. In the weak-coupling regime we calculate the
spin-spin correlation function, the T-matrix, and the magnetization as functions of applied magnetic field,
dc-voltage bias and temperature. In all these quantities we observe characteristic nonequilibrium features for a
nonvanishing external voltage bias such as Kondo splitting and strongly enhanced logarithmic corrections.
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I. INTRODUCTION

A. Motivation

The Kondo effect was first observed in the 1930s while
measuring the resistivity of “pure” metals. Upon lowering
the temperature one finds a minimum in the resistivity of
nonmagnetic metals containing a small concentration of
magnetic impurities. When lowering the temperature even
further the resistivity increases and saturates at a finite value
at zero temperature. Systematic experimental and theoretical
analysis showed that this effect is due to a screening of the
impurity spin by resonant scattering of conduction band elec-
trons leading to an enhanced electron density around the im-
purities. Bypassing electrons scatter off these so-called spin
compensation clouds leading to an enhancement of the resis-
tivity. The Kondo model has become a paradigm model for
strong-coupling impurity physics in condensed matter
theory.1,2 It has been solved exactly using the Bethe
Ansatz,3,4 however, dynamical quantities such as the impu-
rity spectral function are not easily accessible within this
framework. Many other numerical and analytical methods
have been developed since that can get around this
limitation.2,5–13

Experiments on quantum dots in the Coulomb blockade
regime have revived the interest in Kondo physics.14–16 If the
quantum dot is tuned in such a way that it carries a net spin,
resonant tunneling leads to an increase of the conductance up
to the unitary limit.17–19 For small dc-voltage bias V�TK the
system can be described using linear response theory. How-
ever, for dc-currents I�TK linear response theory starting
from the equilibrium ground state is no longer applicable.

In this paper, we study a quantum dot in the Kondo re-
gime �Kondo dot� with an applied magnetic field h in the
regime max�V , �h� ,T��TK, where V is the dc-voltage bias
and T the temperature. We diagonalize the Hamiltonian using
infinitesimal unitary transformations �flow equations�.20,21

Unlike in conventional scaling approaches, the high-energy
states are not integrated out, instead the states are succes-
sively decoupled from large to small energy differences.
Since all energy conserving processes are retained, the
steady current across the dot turns out to be included in the
scaling picture. This current generates a decoherence rate �
that cuts off the logarithmic divergences arising in the Kondo

problem, thereby making the situation max�V , �h� ,T��TK a
weak-coupling problem. Previous renormalization group
�RG� calculations22–30 already established that decoherence
effects due to spin relaxation processes play a key role in
nonequilibrium. This was confirmed by a flow equation
analysis of the Kondo model with voltage bias.21,31,32 Other
new scaling approaches to nonequilibrium problems such as
the real time renormalization group33–36 and the Coulomb
gas representation30,37,38 are consistent with this general pic-
ture and have added further insights. At this point one should
also mention other new approaches such as the scattering
state numerical renormalization group,39 the time-dependent
density renormalization group,40–42 field-theoretical
calculations,40,43,44 the scattering state Bethe Ansatz,45,46 per-
turbative scattering state approaches,47 diagrammatic Monte
Carlo simulations,48,49 and 1 /N-expansion techniques50 that
open up the possibility to describe the very challenging
crossover regime for intermediate voltage bias V�TK.

In this paper, we generalize the flow equation
analysis21,31,32 to include a magnetic field. A similar two-loop
calculation based on the real time renormalization group was
recently also performed by Schoeller et al.51,52 As main re-
sults we derive the spin-spin correlation function, the
T-matrix and the magnetization in both equilibrium and non-
equilibrium situations. Our results for the non-equilibrium
static spin susceptibility �0�T ,V� at zero external magnetic
field h=0 were already presented in a previous publication.32

Let us first have a closer look at the magnetization. The
equilibrium magnetization is well known from the Bethe
Ansatz.3,4 Using the flow equation approach up to two-loop
order we will be able to calculate the magnetization includ-
ing its leading logarithmic corrections consistently in the
whole weak-coupling regime. The T-matrix and the closely
related impurity spectral function are also well studied
objects.5,7–9,13,27,51 Nevertheless, some parameter regimes
like combinations of magnetic field with nonzero voltage
bias have not yet been investigated. We rederive the previous
results and give additional insights into the crossover re-
gimes. The equilibrium spin-spin correlation function is
known in all parameter regimes,10,11,27,54 especially in the
setting of the equilibrium spin boson model. We generalize
our previous results21,32 in both equilibrium and nonequilib-
rium to include nonzero magnetic fields. In addition, we dis-
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cuss in detail the interplay of the different decoherence
sources on the spin dynamics.

The paper is organized as follows. In Secs. I B and I C,
we define the model and give a short introduction to the flow
equation method. The flow equations for the Hamiltonian
and their scaling analysis are derived in Sec. II �with addi-
tional details in Appendix A and B�. The transformation of
the spin operator and the resulting correlation functions are
shown in Sec. III A and Appendix C. In Sec. III B, we ana-
lytically derive the equilibrium zero temperature magnetiza-
tion in leading order directly from the transformation of the
spin operator. The calculation of the T-matrix is shown in
Sec. III C. Numerical results that show similarities and dif-
ferences between voltage bias and temperature are discussed
in Sec. III D.

B. Nonequilibrium Kondo Model

The Hamiltonian of a spin-1/2 Kondo dot in a magnetic
field coupled to two leads is given by

H = �
p,�,�

��p − 	��cp��
† cp�� − hSz

+ �
p,q,�,


J�


2
��cp�↑

† cq
↑ − cp�↓
† cq
↓�Sz

+ �cp�↑
† cq
↓S

− + H.c.�� , �1�

where S� is the impurity spin, � ,
= l ,r label the leads, �
= ↑ ,↓ is the spin index, 	l,r= �V /2 is the chemical poten-
tial, and h is the magnetic field. Without loss of generality we
assume V�0. Unless stated otherwise we do not make as-
sumptions on the sign of h. We are always interested in the
isotropic Kondo model as is relevant in quantum dot physics,
though most of our calculations can easily be generalized to
the anisotropic case.

Analogous to our previous calculations21,31,32 we split the
operator space in even and odd combinations of fermionic
operators from the left and right lead:

fp� =
1

�1 + R
cpr� +

1
�1 + R−1

cpl�

gp� =
1

�1 + R−1
cpr� −

1
�1 + R

cpl�, �2�

where R=Jll /Jrr. Note that the f and g operators obey fermi-
onic anticommutation relations. If the Hamiltonian Eq. �1� is
derived from an underlying Anderson impurity model,22,23

the antisymmetric operators gp�
† , gp� decouple completely

from the dot and the Hamiltonian Eq. �1� can be written in
terms of the f operators only:

H = �
p,�

�pfp�
† fp� − hSz + �

p,q

J

2
��fp↑

† fq↑ − fp↓
† fq↓�Sz

+ �fp↑
† fq↓S

− + H.c.�� , �3�

where J =
def

Jll+Jrr and we have used Jlr
2 =Jrl

2 =JllJrr.
22,23 The

Hamiltonian Eq. �3� looks formally like a standard Kondo
impurity coupled to a conduction band, the only difference
being the nonequilibrium occupation number distribution of
the initial state derived from Eq. �2�:

nf�p� = 	fp�
† fp�
 = �

0, �p 
 V/2
1

1 + 1/R
, ��p� � V/2

1, �p � − V/2
� . �4�

In equilibrium the Kondo temperature is given by TK

=D��J exp�−1 / ��J��, where 2D is the bandwidth and � the
conduction electron density of states �we assume a constant
density of states�. We will use this definition of the Kondo
temperature in the remainder of this paper. For convenience
we also set �=1 in the following. By using the Hamiltonian
Eq. �3� we will be able to describe the equilibrium and the
nonequilibrium system in a unified scaling picture. For later
reference let us already quote the result for the steady state
current in the large dc-voltage limit for vanishing external
magnetic field22,23

I =
3�

4

1

�1 + R��1 + R−1�
V

ln2�V/TK�
. �5�

C. Flow Equations

The flow equation method20,21 provides a framework to
diagonalize a Hamiltonian using infinitesimal unitary trans-
formations. These are constructed using the differential equa-
tion

dH�B�
dB

= ���B�,H�B�� , �6�

where the generator ��B� is a suitable antihermitian operator.
H�B=0� is the initial Hamiltonian and H�B=�� the diagonal
one. The generic choice for the generator is given by the
commutator ��B�= �H0�B� ,Hint�B��, where H0�B� is the diag-
onal part of the Hamiltonian and Hint�B� the interaction part.
With this definition of the generator one can define an energy
scale �feq=B−1/2 that corresponds to the remaining effective
bandwidth: interaction matrix elements with high-energy
transfer ������feq are eliminated in the Hamiltonian
H��feq�, while processes with smaller energy transfer are still
retained.

For generic many particle problems the flow generates
new interactions, which appear in higher order of the inter-
action parameter. To keep track of the latter we introduce a
parameter �=1 in the Hamiltonian H=H0+�Hint. We will
only take terms into account that couple back into the flow of
the original Hamiltonian up to a certain power of �. This
corresponds to a loop expansion in renormalization theory: a
n-loop calculation takes terms of order �n+1 into account. We
use normal ordering to expand operator products, see Appen-
dix A for more details.

To evaluate expectation values the operators have to be
transformed into the diagonal �B=�� basis. Any linear op-
erator O is transformed using
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dO�B�
dB

= ���B�,O�B�� . �7�

A generic operator will typically generate an infinite number
of higher order terms and one has to choose a suitable ap-
proximation scheme, which is again perturbative in the run-
ning coupling.

The flow equation approach has been successfully applied
to various equilibrium many-body problems, such as dissipa-
tive quantum systems,55,56 the two-dimensional Hubbard
model,57,58 low-dimensional spin systems,59,60 and strong
coupling models such as the sine-Gordon model61,62 and the
Kondo model.12,63 It has also been successfully applied to
numerous nonequilibrium initial state problems.64–67

II. FLOW OF THE HAMILTONIAN

A. Ansatz and generator

In the following we derive the Hamiltonian flow for the
Kondo Hamiltonian Eq. �3�. We use the ansatz

H0 = �
p,�

�p:fp�
† fp�:− h�B�Sz

Hint =
1

2�
p,q

�Jpq
↑ �B�:fp↑

† fq↑:− Jpq
↓ �B�:fp↓

† fq↓:�Sz +
1

2�
p,q

Jpq
� �B�

��: fp↑
† fq↓:S

− + :fq↓
† fp↑:S

+� + �
p,q,r,s

Kpq,rs
↑ �B�

��: fp↑
† fq↓fr↑

† fs↑:S
− + H.c.� + �

p,q,r,s
Kpq,rs

↓ �B�

��: fp↑
† fq↓fr↓

† fs↓:S
− + H.c.�

+ �
p,q,r,s

Kpq,rs
� �B�:fp↑

† fq↓fr↓
† fs↑:S

z, �8�

where :: denotes normal ordering with respect to the system
without Kondo impurity,68 Kpq,rs

↑/↓/��B=0�=0 and Jpq
↑/↓/��B=0�

=J. For zero magnetic field the relations h=0, Jpq
↑ =Jpq

↓ =Jpq
�

=Jqp
� , and Kpq,rs

↑ =−Kpq,rs
↓ =−Kpq,rs

� /2 are fulfilled during the
flow. The relations Jpq

↑ =Jqp
↑ , Jpq

↓ =Jqp
↓ , and Kpq,rs

� =Ksr,qp
� are

always fulfilled due to hermiticity. An additionally generated
potential scattering term is neglected since it has no influence
on the universal low energy properties of the model.21,31,32

We also drop an uninteresting constant in the flow of the
Hamiltonian. The straightforward derivation of the commu-
tation relations yields the generator

��B� =
1

2�
p,q

��p − �q��Jpq
↑ �B�:fp↑

† fq↑:− Jpq
↓ �B�:fp↓

† fq↓:�Sz

+
1

2�
p,q

��p − �q + h�B��Jpq
� �B��: fp↑

† fq↓:S
− − :fq↓

† fp↑:S
+�

+ �
p,q,r,s

��p − �q + �r − �s + h�B��Kpq,rs
↑ �B�

��: fp↑
† fq↓fr↑

† fs↑:S
− − H.c.� + �

p,q,r,s
��p − �q + �r − �s

+ h�B��Kpq,rs
↓ �B��: fp↑

† fq↓fr↓
† fs↓:S

− − H.c.�

+ �
p,q,r,s

��p − �q + �r − �s�Kpq,rs
� �B�:fp↑

† fq↓fr↓
† fs↑:S

z. �9�

The resulting two-loop flow equations are worked out in Ap-
pendix B. The Hamiltonian is diagonalized in a controlled
expansion if max��h� ,V ,T��TK, which we assume in the fol-
lowing. Otherwise, one the running couplings Jpq�B� be-
comes of O�1� and an expansion in its powers is uncon-
trolled.

B. One-loop scaling analysis

The complete set of flow equations cannot be solved ana-
lytically due to the complicated momentum dependence.
However, qualitative results for the low energy properties of
the system can be worked out analytically. In the following
we derive a simplified scaling picture using the so-called
diagonal parametrization:21,31,32

Jpq
� �B� = gpq

� �B�e−B��p − �q + h�B��2

Jpq
↑/↓�B� = gpq

↑/↓�B�e−B��p − �q�2
, �10�

where pq= ��p+�q� /2. The energy diagonal equations are
easily obtained by setting �q=�p for the g↑/↓ terms and �q
=�p+h for the g� terms. The diagonal parametrization can
be seen as a generalization of the conventional IR �infrared�-
parametrization of scaling theory that allows for an addi-
tional dependence on the energy scale. Note that the flow of
the running coupling does not depend on the momentum
index p but on the energy scale �p: We use gp as shorthand
notation for g�p

.
In the following we discuss qualitatively the flow of the

one-loop equations. We find

dh

dB
=

1

2�
p,q

�nf�p� + nf�q� − 2nf�p�nf�q����p − �q + h�

��gpq
� �2e−2B��p − �q + h�2

�11�

for the flow of the magnetic field. Its small shift will be
analyzed in the next section.

For a nonzero magnetic field the Kondo couplings will
not remain isotropic under the flow. The running coupling for
parallel scattering is given by

dgp
↑

dB
= − �

r

�1 − 2nf�r����p − �r + h��gpr
��2e−2B��p − �r + h�2

,

�12�

dgp
↓

dB
= − �

r

�1 − 2nf�r����p − �r − h��gpr
��2e−2B��p − �r − h�2

,

�13�

and for spin-flip scattering one finds
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dgp
�

dB
= −

1

2�
r

�1 − 2nf�r��
�p − �r −
h

2
�

� g�r��p + h/2�
� g��p − h/2��r

↑ e−2B��p − �r − h/2�2

−
1

2�
r

�1 − 2nf�r��
�p − �r +
h

2
�

� g�r��p − h/2�
� g��p + h/2��r

↓ e−2B��p − �r + h/2�2
. �14�

For convenience we generally drop the B argument of the
running coupling and the magnetic field. At zero temperature
the flow of the running coupling can with very good
accuracy be simplified using f�x�exp�−2B�x−c�2�
� f�c�exp�−2B�x−c�2�. This approximation removes the �r
dependence of the running coupling and the summations in
Eqs. �12�–�14� can then be performed and lead to the follow-
ing expression ��=1 sets the energy scale�:

�
−�

�

d��1 − 2nf������ + c�e−2B�� + c�2

=
1

2B
� e−2B�c − V/2�2

1 + R
+

e−2B�c + V/2�2

1 + 1/R
� . �15�

This yields for parallel scattering

dgp
↑

dB
=

�g�p+h/2
� �2

2B
� e−2B��p + h + V/2�2

1 + R
+

e−2B��p + h − V/2�2

1 + 1/R
� ,

�16�

dgp
↓

dB
=

�g�p−h/2
� �2

2B
� e−2B��p − h + V/2�2

1 + R
+

e−2B��p − h − V/2�2

1 + 1/R
� ,

�17�

and for spin-flip scattering one finds

dgp
�

dB
=

gp
�g�p−h/2

↑

4B
� e−2B��p − h/2 + V/2�2

1 + R
+

e−2B��p − h/2 − V/2�2

1 + 1/R
�

+
gp

�g�p+h/2
↓

4B
� e−2B��p + h/2 + V/2�2

1 + R
+

e−2B��p + h/2 − V/2�2

1 + 1/R
� .

�18�

The flow of the running coupling is cut off by an exponential
decay unless �p=−�h�V /2� for gp

↑, �p=h�V /2 for gp
↓, or

�p= � �h�V� /2 for gp
�. As a consequence the running cou-

pling is strongly peaked at these energy scales. In the limit
h=0 this just corresponds to the strong-coupling behavior of
the running coupling at the left and right Fermi level. The
terms in two-loop order cut off this strong-coupling behavior
as we will see in the following sections. Replacing the expo-
nentials in Eqs. �16�–�18� by �-step-functions, these equa-
tions become equivalent to the perturbative RG equations
derived by Rosch et al.25,26 The different momentum depen-
dence of the running coupling only leads to subleading cor-
rections.

At nonzero temperature �T
0, V=0� one can unfortu-
nately not give a closed expression for

�
−�

�

d� tanh
 �

2T
��� + c�e−2B�� + c�2

. �19�

We therefore only discuss the asymptotic result for T� �h�.
Since we are mainly interested in small energy scales �p
→0, we study the running coupling at the Fermi level only:
g=g�p=0

�/↑/↓. For B�T−2 the terms at high energies ��T give
the main contribution to the integral and we obtain the usual
zero temperature scaling equation69

dg

dB
=

g2

2B
. �20�

Note that �feq=B−1/2. For B�T−2 only energies ��T con-
tribute to the integral, since higher energies are cutoff by the
exponential. Therefore we linearize the tanh-function and ob-
tain

dg

dB
=

g2

B

�2�

16

1

T�B
. �21�

This implies that the flow of the running coupling effectively
stops for B�T−2�T�B�1�.

To obtain the numerical results shown later we have
solved the two-loop flow equations in diagonal parametriza-
tion Eq. �10� since the solution of the full equations is very
resource intensive. We have verified in selected examples
that this approximation agrees extremely well with the full
set of equations.

C. Two-loop scaling analysis I (equilibrium, zero temperature)

For the case of zero voltage bias and zero temperature, the
running couplings gp

↑�↓� are strongly peaked at �p=−�+�h, and
gp

� at �p= �h /2. For a qualitative analysis it is sufficient to
replace the momentum dependent couplings by their peak
values. For B�h−2 we find the well-known two-loop scaling
equations for the anisotropic Kondo model70

dg��B�
dB

=
g�

2 �B�
2B

−
g�

2 �B�g��B�
4B

dg��B�
dB

=
g��B�g��B�

2B
−

g��B��g�
2�B� + g�

2 �B��
8B

, �22�

where g��B�=g−h
↑ �B�=gh

↓�B� and g��B�=g�h/2
� �B�. The flow

parameter and the remaining effective bandwidth are related
by �feq=B−1/2. The solution of Eqs. �22� is given by g�B�
=g�/��B�=1 / ln�1 / ��BTK�� for an initially isotropic Kondo
model. Additionally, we find a small shift of the magnetic
field

dh�B�
dB

= −
g�

2 �B�
16B3/2

�2� erf��2Bh�B�� . �23�

For small arguments �B�h−2� the error function is linear:

dh�B�
dB

= −
h�B�

2

g�
2 �B�
2B

. �24�

Using dg� /dB=g�
2 / �2B� Eq. �24� yields:
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h�B� = h0 exp
−
1

2� 1

ln�1/��BTK��
−

1

ln�D/TK��� , �25�

where h0=h�B=0�. For large flow parameters B�h−2 the
error function is equivalent to the sign function. This yields a
negligible additional shift of the magnetic field

dh�B�
dB

= −
g�

2 �B�
16B3/2

�2� . �26�

of O�h0 / �ln��h0� /TK��2�. We can therefore use a constant
magnetic field h�B�=h� for B�h−2, which is determined
from Eq. �25� by h�=h�B=h0

−2�. Notice that Bethe Ansatz
calculations13 find a shift of the magnetic field to h��h0�1
−1 / �2 ln��h0� /TK���, which is consistent with our result Eq.
�25� in the scaling limit D /TK→� and confirms our ap-
proach. This result has been additionally confirmed by a re-
cent real time RG calculation,51 which leads to the same
finite bandwidth correction.

For B�h−2 we are then left with the flow equations for
the coupling constants

dg��B�
dB

= − g�
2 �B�g��B�

�2��h��

8�B

dg��B�
dB

= − g�
3 �B�

�2��h��

16�B
, �27�

where we have neglected the one-loop terms since they only
contribute in O�g2 /B�. The initial values are given by

g�/��B0 = �h��−2� = g� =
1

ln��h��/TK�
. �28�

The differential Eqs. �27� are solved by

g��B� =
g�

1 + ����B − �B0�

g��B� =
g�

�1 + ����B − �B0�
, �29�

with

�� = �� =
�2�

4
�g��2�h�� . �30�

In Sec. III A, we will see that up to a prefactor �� can be
identified with the longitudinal and �� with the transverse
spin relaxation rate:

1

T1
� ��,

1

T2
� ��. �31�

We will now already take this identification for granted so
that we can compare our result Eq. �30� with literature val-
ues. The spin-relaxation rate in the limit that the thermal
energy is much smaller than the magnetic energy was first
calculated in71 using unrenormalized perturbation theory: it
agrees with Eq. �30� if one uses the same approximation g�

→g. Ref. 71 also derived T1=T2 /2 in this limit, which in our

calculation is hidden in the observation that the proportion-
ality factors in Eq. �31� differ due to the different decay laws
in Eq. �29�. We will not analyze this in more detail here since
we will later in Sec. III even calculate the full line shape of
the dynamical spin susceptibility.

D. Two-loop scaling analysis II
(nonequilibrium, nonzero temperature)

So far we could use the peaks of the running coupling to
derive a simple scaling picture in equilibrium. Applying a
dc-voltage bias yields a splitting of these peaks by �V /2
since the resonances are pinned to the Fermi levels. As
shown in our previous calculation21,31,32 this can be taken
into account on the rhs of the flow equations by averaging
over the splitting of the peaks, e.g.

g↓�B� =
1

V
�

h−V/2

h+V/2

d�g�
↓�B� . �32�

In the previous section we expanded the flow equations for
small flow parameter B�h−2 and for large flow parameter
B�h−2. If a dc-voltage bias is applied we find four energy
scales that determine small and large B, namely, �V+h�, �V
−h�, V and �h�. So in principle we would have to discuss the
flow equations separately in all five regimes of the flow.
However, we can restrict the following discussion to the ini-
tial flow and the flow at very large flow parameter B�B0
=�0

−2, where �0=min��V+h� , �V−h� ,V , �h��. One can numeri-
cally verify that the flow in the intermediate regimes only
leads to small corrections.

In equilibrium at nonzero temperature we can again use
the peaks of the running coupling to analyze the flow. Here
the relevant energy scales are given by T and h coth�h / �2T��
and we define �0=min�T ,h coth�h / �2T���.

For small flow parameter B �initial flow� we find the usual
scaling Eqs. �22� and a small shift of the magnetic field. In
the regime B��0

−2 the 1-loop terms are negligible. We are
then left with the flow equations

dg��B�
dB

= −
g�

2�B�g��B�

2�B
c1 −

g�
3 �B�

2�B
c2

dg��B�
dB

= −
g�

2 �B�g��B�
�B

c2. �33�

The initial values are g�/��B0�=g�/�
� and the constants are

given by

c1�h�,V� =
�2�

4

V

�1 + R��1 + 1/R�

c2�h�,V� =
�2�

8

�V + h�� + �V − h�� + �h���R + 1/R�
�1 + R��1 + 1/R�

�34�

in nonequilibrium �V�0, but zero temperature T=0�. In
equilibrium �V=0, T�0� we have

c1�h�,T� =
�2�

4
T
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c2�h�,T� =
�2�

8
h� coth
 h�

2T
� , �35�

where we have defined h�=h�B0�. One easily shows that the
solution of

dg��B�
dB

= −
g�

3�B�
�B

c1 −
g�

2�B�
�B

� �g�
� �2

g�
� c2 − g�

�c1�
g��B� =�g�

2�B�
c1

c2
+ g��B�� �g�

� �2

g�
� − g�

�c1

c2
� , �36�

also solves Eqs. �33�. Thus, Eqs. �36� are an equivalent for-
mulation of Eqs. �33�. The remaining flow equation is an
Abel differential equation of the first kind whose general
analytic solution is impossible. Therefore, only asymptotic
results can be obtained. Note that the coupling constants as-
ymptotically flow to zero or to a nontrivial fixed point
g��B�=g�

�−c2�g�
� �2 / �g�

�c1� in Eq. �36�. This nontrivial fixed
point can only be reached in the anisotropic Kondo model
with initial values g��B=0�� �g��B=0�� and �h��V ,T. It is
an unphysical artifact of our approximations in the flow
equation calculation, where higher order terms need to be
included in this regime. We will not say something anything
about this part of the parameter space of the anisotropic
Kondo model for the remainder of this paper and now return
to the isotropic model.

The equilibrium zero temperature behavior has already
been analyzed in the previous section. Notice that the result
Eq. �30� for the spin relaxation rate derived there holds gen-
erally when the magnetic energy dominates, that is for large
magnetic field �h��V ,T. We next look at the opposite limit
of vanishing magnetic field, h=0. The Kondo model remains
isotropic and longitudinal and transverse relaxation rates co-
incide. Equation �36� is solved by

g�B� =
g�

�1 + ���B − �B0�
, �37�

where g�B�=g��B�=g��B� with the spin relaxation rate �
=4�g��2c1. The equilibrium finite temperature spin relaxation
rate therefore shows the expected Korringa-behavior propor-
tional to temperature,72 while the nonequilibrium zero tem-
perature spin relaxation rate is proportional to the voltage
bias �or more accurately according to Eqs. �5� and �34�: pro-
portional to the current across the dot�, which agrees with the
perturbative nonequilibrium RG-result.27

For intermediate values of the magnetic field we find a
competition between the quadratic and the cubic terms in the
running coupling in Eq. �36�. For very small energies
�B→�� the quadratic term dominates the flow if it is non-
zero and the running couplings decay like g� �B−1/2 and
g��B−1/4. If the cubic term dominates both running cou-
plings are proportional to B−1/4. One can still analyze this
analytically for small magnetic field V ,T� �h�: Eqs. �33� are
approximately solved by

g�/��B� =
g�/�

�

�1 + ��/���B − �B0�
, �38�

since g�
��g�

� and c1�c2. In the high-voltage regime the en-
ergy scales where the algebraic decay of the couplings sets in
are given by

���h�,V� = �2��g�
��2 V

�1 + R��1 + R−1�

���h�,V� =
�2�

2
�g�

� �2 �
�V + h�� + �V − h�� + �h���R + R−1�

�1 + R��1 + R−1�
.

�39�

Here, we have kept the leading h-dependence to show that as
expected only the spin flip coupling sees both the magnetic
field and the voltage bias in its relaxation rate. Equations
�39� agrees with the appropriate limit of the spin relaxation
rate derived in Ref. 51 In equilibrium at nonzero temperature
for �h��T we find:

���h�,T� = �2��g�
��2T

���h�,T� =
�2�

2
�g�

� �2h� coth
 h�

2T
� . �40�

We have now analytically derived the qualitative scaling be-
havior and the related energy scales of the Kondo model as a
function of temperature, voltage bias and magnetic field. In
particular, we have seen how sufficiently large temperature,
voltage bias �more accurately: a sufficiently large current Eq.
�5�� or magnetic field can make the Kondo model a weak-
coupling problem, where the coupling constants decay to
zero and therefore allow for a controlled solution using flow
equations. Similar observations have been made using other
renormalization group techniques.27,35,37 In the next chapter
we will turn to a completely numerical solution of the flow
equations in order to obtain quantitative results. This is also
the only way to analyze the behavior when the magnetic field
is of the same order as the voltage bias or the temperature,
which was excluded in the above analytical discussion. Still,
the analytical results obtained so far are important because
they will serve as our guidelines to understand and interpret
the results of the numerical solution.

III. RESULTS AND DISCUSSION

We restrict the following discussion of numerical results
to symmetric coupling to the leads, R=1. The extension to
R�1 is straightforward.

A. Spin-spin correlation function

Since the interacting ground state becomes trivial in the
B=� basis, we transform all operators into the diagonal basis
before calculating their expectation values. We make the fol-
lowing ansatz for Sz:
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Sz�B� = hz�B�Sz +
M�B�

2
+ �

p,q
�pq�B��: fp↑

† fq↓:S
− + :fq↓

† fp↑:S
+� ,

�41�

where hz�B=0�=1, �pq�B=0�=0 and M�B=0�=0. For the
transformation of the spin operator it is sufficient to use only
the first order part of the generator Eq. �9�, that is to neglect
terms in O�J2� in the generator: in Ref. 32, we showed that
this approximation already yields results including their full
leading logarithmic corrections.

The decay of the spin operator into a different structure
under the unitary flow is described by the flow equation for
the coefficient hz�B�:

dhz�B�
dB

= − �
p,q

�nf�p� + nf�q� − 2nf�p�nf�q��

���p − �q + h�Jpq
� �B��pq�B� . �42�

For the flow of the newly generated c-number we find

dM�B�
dB

= �
p,q

�nf�p� − nf�q����p − �q + h�

�Jpq
� �B��pq�B� . �43�

For zero magnetic field the relations Jpq
� �B�=Jqp

� �B� and
�pq�B�=−�qp�B� are fulfilled. Using these relations one eas-
ily shows M�B��0. We will later see that M is just the
magnetization and therefore it makes sense that M only be-
comes nonzero during the flow if an external magnetic field
is applied.

The flow of the newly generated operator structure in the
spin operator is given by

d�pq�B�
dB

=
hz

2
��p − �q + h�Jpq

� �B� +
1

4�
r

�1 − 2nf�r��

����r − �p�Jpr
↑ �B��rq�B� + ��r − �q�Jrq

↓ �B��pr�B�� .

�44�

In the sequel we will focus on the longitudinal spin suscep-
tibility. The calculation of the transverse part follows exactly
the same route and the transformation laws of Sx/y�B� are
given in Appendix C.

During the initial flow hz�B� is nearly unchanged: its flow
is only of O�g��B=0�−g��B��. For simplicity we restrict the
following discussion to equilibrium and zero temperature;
the extension to V ,T
0 is straightforward. In lowest order
the solution of Eq. �44� is formally given by

�pq�B� =
1

2
��p − �q + h��

0

B

dB1hz�B1�J��p,q,B1� . �45�

With Eq. �42� follows �using diagonal parametrization�:

dhz

dB
� −

��

8

g�
2 hz

�B
�h� , �46�

where h is the external magnetic field. Notice the similarity
to the two-loop flow equation for g� Eq. �27�. Therefore, the
Sz operator begins to decay on the same energy scale at

which the strong coupling divergence of g� is cutoff. By a
similar argument one can show that the decay of the Sx/y

operators is related to the flow of g�: the decay starts on the
same energy scale that cuts off the strong coupling diver-
gence of g�. We conclude that the energy scales �� and ��

determine the decay of the spin operators parallel and per-
pendicular to the external magnetic field.

It is this observation that relates the decoherence rates ��

and �� to the physical spin relaxation rates: 1 /T1 and 1 /T2
are defined through the broadening of the resonance poles in
the longitudinal and the transverse dynamical spin
susceptibilities.27 Now for B���/�

−2 all excitations with en-
ergy transfer much larger than the decoherence rate are inte-
grated out. Since the spin operator has not yet decayed on
this B scale, the broadening of the resonance pole can there-
fore not be larger than the corresponding energy scale. The
algebraic decay of the spin operator just corresponds to the
broadening of the resonance pole. Hence �up to a prefactor�,
1 /T1��� and 1 /T2���. The width of the broadening of the
resonance poles is therefore �up to an uninteresting prefactor�
automatically given by the decoherence rates defined in Secs.
II C and II D. As already discussed there, our results for the
longitudinal and the transverse spin relaxation rates agree
with previous results in the literature in their appropriate lim-
its.

The symmetrized spin-spin correlation function is defined
as

Ca�t1,t2� =
1

2
	�Sa�t1�,Sa�t2��
 �47�

and the response function as

�a�t1,t2� = − i��t1 − t2�	�Sa�t1�,Sa�t2��
 . �48�

In equilibrium these expectation values are evaluated with
respect to the ground state or thermal state defined by
H�B=��.21 In nonequilibrium they have to be evaluated with
respect to the current-carrying steady state. This was dis-
cussed in a previous publication:32 By explicitly following
the time evolution of the initial state until the steady state
builds up, we could show that we can work with the same
state as in equilibrium in the present order of our calculation
�notice that this does not hold for the evaluation of the cur-
rent operator itself�. The Fourier transformed Sz-Sz correla-
tion function is therefore both in equilibrium and nonequilib-
rium given by

Cz��� =
��1 − sgn�h̃��

2 �
p

��̃
�p,�p+�+h̃

2
nf��p�

��1 − nf��p + � + h̃�� + �̃
�p,�p−�+h̃

2
nf��p�

��1 − nf��p − � + h̃��� +
��1 + sgn�h̃��

2

��
p

��̃
�p,�p+�+h̃

2
nf��p + � + h̃�

��1 − nf��p�� + �̃
�p,�p−�+h̃

2
nf��p − � + h̃��1 − nf��p���
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+
�

2
M̃2���� , �49�

where the tilde denotes the value at B=�. The corresponding
imaginary part of the Fourier transformed response function
is

�z���� =
��1 − sgn�h̃��

2 �
p

��̃
�p,�p+�+h̃

2
nf��p�

��1 − nf��p + � + h̃�� − �̃
�p,�p−�+h̃

2
nf��p�

��1 − nf��p − � + h̃��� +
��1 + sgn�h̃��

2

��
p

��̃�p,�p+�+h̃nf��p + � + h̃�

��1 − nf��p�� − �̃
�p,�p−�+h̃

2
nf��p − � + h̃��1 − nf��p��� ,

�50�

the real part is accessible via a Kramers-Kronig transforma-
tion. The correlation function is a symmetric function of �,
the imaginary part of the response function is antisymmetric.
Both functions do not depend on the sign of h. In equilibrium
the fluctuation dissipation theorem73 relates the imaginary
part of the response function and the spin-spin correlation
function by �z����=tanh�� / �2T��Cz���. In nonequilibrium
the fluctuation dissipation theorem is violated in general. For
completeness the corresponding expressions for Sx/y are
given in Appendix C.

Typical equilibrium zero temperature spin-spin correlation
functions are shown in Fig. 1. At zero frequency we find a
�-peak with strength M2�B=��� /2 in the correlation func-
tion Eq. �49� due to the nonzero spin expectation value �it is
not plotted for obvious reasons�. For convenience we assume
h
0 in the following discussion. The maximum of the spin-
spin correlation function �ignoring the �-peak at �=0� is as
expected at ��h� and it decays with increasing magnetic
field �see the inset of Fig. 1�. For ���� �h� we find the ex-
pected result with the renormalized coupling constant1 on the

energy scale �, Cz����1 / ����ln2���� /TK��. For ����h� the
correlation function vanishes in the present order of our cal-
culation. However, the generalized Shiba relation10,80 asserts
that the correlation function is actually linear at small fre-
quencies, Cz���� �� /h2� / ln4�h /TK� for h�TK. This exact
result is effectively of fourth order in the renormalized cou-
pling 1 / ln�h /TK� and therefore beyond the reach of our cur-
rent calculation of the correlation function, which only in-
cludes terms up to second order.

Figure 2 shows the buildup of this characteristic behavior
of the spin-spin correlation function also for nonzero voltage
bias32 upon increasing the magnetic field. The inset shows
the corresponding plot in equilibrium for nonzero tempera-
ture. In nonequilibrium we find pronounced peaks at ���
��h−V�, �����h+V�, and ����h for h
V. The peaks at �
� � �h−V� join for h�V and build up the zero frequency
peak.

Notice that for nonzero temperature all additional peaks
are smeared out �inset of Fig. 2�. This exemplifies a key
difference between nonequilibrium and nonzero temperature
that will keep reappearing in other dynamical quantities. The
nonequilibrium Fermi function Eq. �4� retains its character-
istic discontinuities, which lead to strong-coupling behavior
yielding Kondo-split peaks in dynamical quantities. These
peaks are only cutoff by the decoherence rate and not by
voltage or temperature itself, and therefore, much more pro-
nounced.

The spin-spin correlation function of the Kondo Model in
a magnetic field has so far mainly been studied in the context
of the spin boson model.10,11 Using a Majorana fermion rep-
resentation Mao et al.54 obtained its low frequency properties
in the case of dc-voltage bias and nonzero temperature in
agreement with our results. For high magnetic fields no pre-
vious results exist, since high frequencies are difficult to ac-
cess by numerical methods such as NRG �numerical renor-
malization group�. Paaske et al.27 studied the transverse
dynamical spin susceptibility for high voltage bias, which
can be calculated within our approach using the transforma-
tion of the spin operators perpendicular to the magnetic field
in Appendix C.
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FIG. 1. Equilibrium Sz-Sz correlation function for various mag-
netic fields, V=T=0. The inset shows the decay of the peak height,
which approximately follows a power law �this is a purely numeri-
cal observation�.
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B. Magnetization

From the ansatz Eq. �41� follows directly that the magne-
tization of the dot spin is given by M�B=��. However, it
turns out that the Sz operator decays slowly with B and there-
fore also the magnetization converges slowly, making the
analysis difficult. Still, we can use the following trick to
obtain the leading behavior of the magnetization for T=V
=0 analytically. Clearly

2	Sz
 = 2hz���	��Sz��
 + M��� = hz���sgn�h���� + M��� ,

�51�

where ��
 is the ground state of H0�B=��. Note that hz���
=0. For convenience we assume h
0 in the following. We
rewrite Eq. �51� to the form

2	Sz
 = hz�0� + M�0� + �
0

�

dB
d�hz�B� + M�B��

dB

= 1 − 2�
0

�

dB�
p,q

nf�q��1 − nf�p��

���p − �q + h�Jpq
� �B��pq�B� . �52�

Using the parametrization

Jpq
� �B� � g��B�e−B��p − �q + h�2

�pq�B� �
g��B�

2��p − �q + h�
�1 − e−B��p − �q + h�2

� �53�

we find

2	Sz
 � 1 − �
D−2

�

dB
g�

2 �B�
4B

f�B� , �54�

where f�B�=1 for B�h−2 and f�B�=0 for B�h−2. Neglect-
ing higher order corrections we find

2	Sz
 � 1 − �
D−2

h−2

dB
g�

2 �B�
4B

. �55�

With dg��B� /dB=g�
2 �B� / �2B� follows

2	Sz
 � 1 −
1

2 ln�h/TK�
+

1

2 ln�D/TK�
, �56�

which �for D /TK→�� is to leading order the Bethe Ansatz
result.79 Figure 3 shows the good agreement between the
analytic expression and numerical results for high magnetic
fields. For fields of O�10 TK� we see deviations from the
analytic result due to the perturbative nature of our approach.
The inset shows the bandwidth dependence of the magneti-
zation in good agreement with Eq. �56�.

Unfortunately, a similar analytical calculation for T ,V

0 has not been possible. We will present numerical results
in Sec. III D 3.

C. T-Matrix

The scattering of conduction band electrons from lead �
to lead 
 is described by the T-matrix T�
,����. It is defined
via the electron Greens function

G�
,���� = G�,�
�0� �����,
 + G�,�

�0� ���T�
,����G
,�
�0� ��� .

�57�

If the Hamiltonian �1� is derived from an Anderson impurity
model only one eigenvalue of the T-matrix is nonzero.27 The
imaginary part of the T-matrix is given by5

Im�T����� = − �
−�

�

dt��t�	�O��t�,O�
†�0��
ei�t, �58�

where

O↑�B� = �
k

�Uk
��B�fk↓S

− + Uk
↑�B�fk↑S

z�

O↓�B� = �
k

�Vk
��B�fk↑S

+ − Vk
↑�B�fk↓S

z� , �59�

Uk
�/↑�B=0�=J�/↑ /2 and Vk

�/↓�B=0�=J�/↓ /2. In lowest order
the flow equations for the spin up component are given by

dUp
↑

dB
= −

1

2�
r

�1 − 2nf�r����p − �r + h�Up
�Jrp

� , �60�

dUp
�

dB
= −

1

4�
r

�1 − 2nf�r����p − �r + h�Ur
↑Jkp

�

−
1

4�
r

�1 − 2nf�r����p − �r�Up
�Jrp

↓ . �61�

Comparing the latter equations with Eqs. �12� and �14�
one already notices their similarity to the flow of the running
coupling in one-loop order. In the following we work out the
details. Using the approximations from Sec. II B we find

dUp
↑

dB
=

g�p+h/2
� U�p+h

�

2B
� e−B��p + h + V/2�2

1 + R
+

e−B��p + h − V/2�2

1 + 1/R
� .

�62�

Neglecting a factor two in the exponential, this equation is
equivalent to Eq. �16� provided Up

↑=gp
↑ /2 and U�p+h/2

�
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FIG. 3. The magnetization as a function of the external magnetic
field calculated from the analytic result Eq. �56� and from the nu-
merical solution of the flow equations for D=103TK. The inset
shows the bandwidth dependence of the magnetization at h
=100TK.
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=gp
� /2. Analyzing the flow of the spin-flip component we

find

dU�p+h/2
�

dB
=

gp
�U�p−h/2

↑

4B
� e−B��p − h/2 + V/2�2

1 + R
+

e−B��p − h/2 − V/2�2

1 + 1/R
�

+
g�p+h/2

↓ U�p+h/2
�

4B
� e−B��p + h/2 + V/2�2

1 + R

+
e−B��p + h/2 − V/2�2

1 + 1/R
� . �63�

Again neglecting the factor two in the exponential, this equa-
tion is equivalent to the one-loop flow Eq. �18� for gp

�. One
easily shows that higher order terms in the transformation of
the operator Eq. �59� have the same effect on the flow as the
two-loop terms in the transformation of the Hamiltonian. The
calculation for nonzero temperature is again more difficult,
nevertheless we find the same relations between the flow of
the operator and the running coupling.

Doing an analogous argument for the V terms, we identify

Up
↑�B� =

gp
↑�B�
2

, Up
��B� =

g�p−h/2
� �B�

2
,

Vp
↓�B� =

gp
↓�B�
2

, Vp
��B� =

g�p+h/2
� �B�

2
. �64�

Therefore the O� operators completely decay into more
complicated objects for B→�. Since calculating the latter is
resource intensive �three-momentum indices�, it is more eco-
nomic to evaluate the T-matrix at the decoherence scale,7

where the decay of the couplings sets in and higher order
terms in the transformation of the observable are not yet
important:

Im�T����� � −
�

16
��ĝ�

��2 + 2�ĝ
�+�ĥ/2
� �2

��1 + �2	Sz
�2n̂f�� + �ĥ� − 1��� . �65�

Here the hat denotes functions at the decoherence scale.
Though the further flow leads to a decay of O�, the spectral
function remains unchanged for B
��/�

−2 , where ��/� is the
dominant decoherence scale. In Eq. �65�, we can replace the
expectation value of Sz at the decoherence scale by the mag-
netization of the system since the Sz operator decays notice-
ably only for B���/�

−2 .
As suggested by Rosch et al.7 we use Fermi functions

broadened by the decoherence scale �� to describe the dis-
tribution function for the f operators at the decoherence scale
n̂f���. This avoids the costly full numerical solution to
B→� and yields results that are virtually identical. In equi-
librium at small temperature T� �h� the distribution function
is then given by n̂f���= f����, where f����=1 /2
−arctan�� /��� /�. At high temperature T� �h� the spin ex-
pectation value 	Sz
 vanishes. Then the distribution function
only enters in subleading order. Note that the imaginary part
of the T-matrix in general depends only weakly on the details
of the broadening scheme. In nonequilibrium the step func-

tions at both chemical potentials have to be broadened yield-
ing n̂f���= f���+V /2� / �1+R�+ f���−V /2� / �1+1 /R� for
the distribution function. The additional factor of 1/4 in com-
parison with the result obtained by Rosch et al.7 is due to our
different definition of J. For symmetric coupling R=1 the
spin-up and spin-down component are related by
Im�T↑����=Im�T↓�−���.

The imaginary part of the T-matrix and the spectral func-
tion are related by A����=−Im�T���+ i��� /�. Figure 4
shows spectral functions for several values of the magnetic
field. They are strongly peaked at ��h. Rosch et al.7 studied
this structure in detail by analyzing the spectral function nor-
malized to 1 as a function of � /h. Since we have included
the shift of the magnetic field, we will do likewise as a func-
tion of � /h�. In agreement with the results derived by Rosch
et al.7 we find that the width of the left flank is approxi-
mately proportional to the decoherence rate Eq. �30�, leading
to a sharpening of the left flank for increasing h, while the
width of the right flank increases for increasing h.

The imaginary part of the T-matrix at zero frequency is
related to the magnetization via the Friedel sum rule.74,75

Inserting the leading term of the Bethe Ansatz result76 one

finds Im�T̂��0��=−sin2�� / �4 ln��h� /TK��� /�. The inset of
Fig. 4 shows a comparison between the Bethe Ansatz and the
flow equation result. Again we find very good agreement for
high-magnetic fields and deviations for fields of O�10 TK�.

For large frequencies the spectral function decays propor-
tional to �1 / ln2���� /TK��2,7–9 which is consistent with our
results. Also Bethe Ansatz calculations13 show that the maxi-
mum of the spin-down spectral function is at h��h�1
−1 / �2 ln��h� /TK���, which is consistent with our shift of the
magnetic field Eq. �25� in the scaling limit D /TK→�.

D. Voltage bias vs temperature

1. Spin-spin correlation function

The spin-spin correlation function at zero magnetic field
�V or T�TK� shows a zero frequency peak.21,32 In Fig. 5, we
show its decay due to an applied magnetic field. Again the
zero frequency �-peak in Eq. �49� is not plotted. The sum
rule
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�

2
= �

−�

�

d�Cz��� = M̃2�

2
+ �

−�

�

d�C�
z ��� �66�

is not fulfilled exactly since we neglect higher order terms in
the transformation of Sz. The error is typically of order one
percent. Here C�

z ��� denotes the �̃pq terms in Eq. �49�.
For increasing magnetic field the magnetization M̃ in-

creases. Due to the sum rule and the fact that C�
z ��� is a

non-negative function, an increase in M̃ must lead to a de-
crease of C�

z ���, leading to a decay of the correlation func-
tion for ��0.

At first glance the decay of the zero frequency peak looks
similar for both the equilibrium and the nonequilibrium case.
Only the relative decay of the maximum as a function of V /h
and T /h seems to be different. On closer inspection we find
additional peaks at �����h� for V
 �h�: their height increases
with the magnetic field, see Fig. 2. In equilibrium for non-
zero temperature these peaks are smeared out. For high fre-
quencies we find the usual Cz����1 / �����ln���� /TK��2� be-
havior.

In Fig. 6�a� we show the Kondo splitting of the sharp edge

at �=h� in the correlation function due to an applied small
voltage bias. The two new peaks are located at ���
��h��V�. On the other hand, for small temperature we
again only find a broadening effect.

2. T-matrix

Figure 7 depicts the sum of both spin components of the
T-matrix for vanishing external magnetic field, that is the
full impurity spectral function. For nonzero voltage bias
�V�TK� and zero magnetic field one finds the characteristic
Kondo split peaks at �� �V /2. For nonzero temperature
one only observes the expected broadening of the zero fre-
quency peak. These observations are consistent with the re-
sults obtained by NRG5 and perturbative RG.27 Applying a
small magnetic field leads to a shift with the magnetic field
strength and an asymmetric deformation of the peaks. Typi-
cal curves are shown in Fig. 8. For large magnetic fields we
have already discussed in Sec. III C how the spin down com-
ponent of the spectral function in the equilibrium zero tem-
perature Kondo model develops a pronounced peak at
��h, see Fig. 4. In Fig. 9�a�, we show the splitting of this

0

0.025

0.05

0.075

0.1

0.125
C

z
(ω

)∗
T

K
h = 0 T

K

h = 2 T
K

h = 8 T
K

h = 16 T
K

h = 20 T
K

0 5 10 15 20

ω/T
K

0

0.025

0.05

0.075

C
z
(ω

)∗
T

K

h = 0 T
K

h = 8 T
K

h = 20 T
K

h = 28 T
K

h = 40 T
K

a) V = 20 T
K

b) T = 20 T
K

FIG. 5. Decay of the zero frequency peak in the spin-spin cor-
relation function with increasing magnetic field, �a� V=20TK, �b�
T=20TK.

0

0.0001

0.0002

C
z
(ω

)∗
T

K

V = 0 T
K

V = 30 T
K

V = 50 T
K

V = 70 T
K

0 50 100 150 200 250 300

ω/T
K

0

0.0001

C
z
(ω

)∗
T

K

T = 0 T
K

T = 5 T
K

T = 8 T
K

a)

b)

FIG. 6. �a� Kondo splitting of the sharp edge in the spin-spin
correlation function �magnetic field h=100TK� due to a small volt-
age bias. �b� Small temperature only leads to broadening and no
Kondo splitting.

0

0.1

0.2

-I
m

[T
(ω

)]

V = 20 T
K

V = 30 T
K

V = 50 T
K

V = 100 T
K

-75 -50 -25 0 25 50 75

ω/T
K

0

0.1

0.2

-I
m

[T
(ω

)]

T = 10 T
K

T = 20 T
K

T = 40 T
K

T = 100 T
K

a)

b)

FIG. 7. Sum of both spin components of the T-matrix at zero
magnetic field for various values of �a� voltage bias and �b�
temperature.

0

0.05

0.1

-I
m

[T
↓
(ω

)]

h = 0 T
K

h = 4 T
K

h = 12 T
K

h = 20 T
K

-25 0 25 50

ω/T
K

0

0.02

0.04

0.06

-I
m

[T
↓
(ω

)]

h = 0 T
K

h = 4 T
K

h = 12 T
K

h = 20 T
K

a) V = 20 T
K

b) T = 20 T
K

FIG. 8. �a� Magnetic field shift of the Kondo split zero fre-
quency peak of the spectral function for V=20TK , T=0. �b� Non-
zero temperature in equilibrium �here: T=20TK , V=0� leads to
broadening.

NONEQUILIBRIUM KONDO MODEL WITH VOLTAGE BIAS… PHYSICAL REVIEW B 81, 035113 �2010�

035113-11



peak into two peaks at ��h�V /2 due to a small voltage
bias. Again, applying a small temperature only leads to a
broadening of the peak.

We can see that it is straightforward to resolve sharp fea-
tures in the dynamical quantities at large frequencies using
the flow equation approach, which is notoriously difficult
using NRG. For example the finite temperature broadening
in Fig. 6 and our results for the T-matrix with magnetic field
plus voltage bias or nonzero temperature have not been pre-
viously obtained using other methods.

3. Magnetization

In principle the magnetization can be extracted from the
spin-spin correlation function via the sum rule Eq. �66�.
However, due to the approximations in our calculation the
sum rule is not exactly fulfilled and we were only able to
extract qualitative results via this route. More accurate re-
sults can be obtained by analyzing the flow of M�B� directly.
We were able to reproduce previously known results from
Bethe Ansatz and nonequilibrium perturbation theory.

In equilibrium the exact magnetization is accessible by
solving the Bethe Ansatz equations.77–79 Assuming h
0
the asymptotic results relevant for this paper are given
by the zero temperature magnetization M�h ,T=0�=1
−1 / �2 ln�h /TK�� for h�TK, and the high-temperature mag-
netization M�h ,T�=tanh�h / �2T�� for T�TK and T�h. The
high-temperature result is of course just the magnetization of
a free spin.

Initial nonequilibrium perturbation theory calculations28,53

in the limit V�TK or �h��TK found Mpt�h ,V�=4h / �2�h�
+ �h+V�+ �h−V�� for the magnetization. Here the important
logarithmic corrections at zero voltage bias were missing
since Mpt�h ,V�=sgn�h� for V� �h�.

In Sec. III B we have already derived the zero tempera-
ture magnetization within the flow equation framework. Fig-
ures 10 and 11 show the crossover between the equilibrium
zero temperature result and the asymptotic high temperature
result or the asymptotic high-voltage bias result �it should be
noted that there is a noticeable dependence of the results in
these figures on the bandwidth similar to Fig. 3�. These
crossovers are smooth and show the expected reduction of

the magnetization for V� �h�. This behavior in our calcula-
tion is consistent with the recent two-loop nonequilibrium
calculation by Schoeller and Reininghaus,51 who also find a
nonzero susceptibility for V� �h�. The logarithmic enhance-
ment of the nonequilibrium spin susceptibility at zero mag-
netic field in Ref. 51 is also consistent with our previous
publication.32 Unfortunately, a more quantitative comparison
is difficult due to the significant finite bandwidth corrections
mentioned above: the numerical solution of the flow equa-
tions becomes too time consuming for much larger systems,
whereas the results in Ref. 51 are expressed in the scaling
limit.

IV. CONCLUSION

In this paper we have employed the flow equation ap-
proach to derive a consistent scaling picture of the equilib-
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rium and nonequilibrium Kondo model in its weak-coupling
regime. The weak-coupling regime is realized for sufficiently
large voltage bias V, magnetic field h or temperature T as
compared to the equilibrium Kondo temperature:
max�I , �h� ,T��TK, where I is the current Eq. �5� across the
dot. Our calculation allowed for the evaluation of static and
dynamical quantities including their leading logarithmic cor-
rections. Specifically, we have studied the spin-spin correla-
tion function, the magnetization and the T-matrix as func-
tions of V ,h and T and explored various crossover regimes.
We want to mention that while the flow equation approach
has to rely on numerical evaluations of complicated sets of
differential equations �at least if one is interested in quanti-
tative results beyond leading order�, it does allow one to
study all combinations of the parameters voltage bias, tem-
perature and magnetic field in one framework.

As emphasized by Millis et al.,37,38 the nonequilibrium
noise generated by the steady state current across a quantum
impurity can to leading order be approximated by thermal
noise with an effective temperature Teff�I�, but with impor-
tant differences between nonequilibrium noise and thermal
noise occurring beyond leading order. We could see this ex-
plicitly in many of our dynamical quantities, where nonequi-
librium conditions due to a voltage bias lead to effects like
Kondo splitting and strongly enhanced logarithmic correc-
tions. One benefit of our approach �and of Ref. 51� as com-
pared to previous non-equilibrium renormalization calcula-
tions is that decoherence enters on the same footing as the
equilibrium scaling flow, which should be useful for investi-
gating other more complex quantum dot structures in the
future.
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APPENDIX A: NORMAL ORDERING

In this section, we briefly sum up some properties of nor-
mal ordered operators that are frequently used in flow equa-
tion calculations. For more details we refer to Ref. 21

In the following Ap denotes creation and annihilation op-
erators, the �’s are c-numbers and P��Ap�� is a product of
operators from the set �Ap�. The rules for Wick’s normal
ordering are given by:

�1� Numbers are unchanged:

:�: = � . �A1�

�2� Normal ordering is linear

:�1P1��Ap�� + �2P2��Ap��: = �1:P1��Ap��:+ �2:P2��Ap��:

�A2�

�3� Recurrence relation

Aq:P��Ap��: = :AqP��Ap��:+ �
r

Cqr:
�P��Ap��

�Ar
: , �A3�

where

Cqr = 	��AqAr��
 �A4�

for a pure reference state ��
 or

Cqr = Tr��AqAr� �A5�

for some mixed state described by the density matrix �. Typi-
cally the ground state of the noninteracting Hamiltonian is
chosen as reference state ��
.

From the recurrence relation Eq. �A3� one can derive
Wick’s first theorem

:Ap1
. . . Apn

: = 
Ap1
− �

q1

Cp1q1

�

�Aq1

� . . .

�
Apn−1
− �

qn−1

Cpn−1qn−1

�

�Aqn−1

�Apn
.

�A6�

From this relation follows that the commutation of neighbor-
ing fermionic operators picks up a minus sign, bosonic op-
erators commute. The product of two normal-ordered objects
can be calculated from Wick’s second theorem. The fermi-
onic version is given by

:P1��Ap��::P2��Ap��: = :exp
�
r,s

Crs
�2

�Bs � Ar
�

� P1��Ap��P2��Bp��:�A=B. �A7�

APPENDIX B: TRANSFORMATION OF THE
HAMILTONIAN

The derivation of the flow equations for the Hamiltonian
Eq. �8� is straightforward. Only some preliminary relations
are needed. Products of spin operators are easily calculated
using the standard spin operator algebra. The relations

�AS−,BSz� =
1

2
�A,B�S−

�AS+,BSz� = −
1

2
�A,B�S+

�AS+,BS−� = �A,B�Sz +
1

2
�A,B� �B1�

are fulfilled for arbitrary �linear� operators A ,B that commute
with the spin operators.

Using Eq. �A7� the following relations are easily derived.
For the 1-loop calculation, the commutator

�:c1�
† c1:,:c2�

† c2:� = :c1�
† c2:�1,2� − :c2�

† c1:�1�,2 + �1�,2�1,2��n�1��

− n�1�� �B2�

is needed. Due to the spin operator algebra Eq. �B1� also the
anticommutator has to be calculated:
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�:c1�
† c1:,:c2�

† c2:� = 2:c1�
† c1c2�

† c2:+ �1,2��1 − 2n�1��:c1�
† c2:

+ �2,1��1 − 2n�1���:c2�
† c1:+ �1�,2�1,2��n�1��

+ n�1� − 2n�1��n�1�� . �B3�

In the two-loop calculation we neglect terms with four or six
fermionic operators on the rhs in the following since these
terms would enter the calculation only in three-loop order.
We again need the commutator

�:c1�
† c1:,:c2�

† c2c3�
† c3:� = �1�,2�1,2��n�1�� − n�1��:c3�

† c3:

− �1�,2�1,3��n�1�� − n�1��:c2�
† c3:

− �1�,3�1,2��n�1�� − n�1��:c3�
† c2:

+ �1�,3�1,3��n�1�� − n�1��:c2�
† c2:

�B4�

and the anticommutator

�:c1�
† c1:,:c2�

† c2c3�
† c3:� = �1�,2�1,2��n�1�� + n�1�

− 2n�1��n�1��:c3�
† c3:− �1�,2�1,3��n�1��

+ n�1� − 2n�1��n�1��:c2�
† c3:

− �1�,3�1,2��n�1�� + n�1�

− 2n�1��n�1��:c3�
† c2:+ �1�,3�1,3��n�1��

+ n�1� − 2n�1��n�1��:c2�
† c2: �B5�

for the further calculation.
Using the above relations the task of deriving the flow

equations is reduced to simple but lengthy bookkeeping. The
resulting two-loop equations are given in the following. In
the diagonal part of the Hamiltonian only the splitting of the
dot levels due to the magnetic field is shifted

dh

dB
=

1

2�
p,q

�nf�p� + nf�q� − 2nf�p�nf�q����p − �q + h��Jpq
� �2

+ O�J4� . �B6�

In the case of zero �initial� magnetic field the relation Jpq
�

=Jqp
� is fulfilled leading to dh /dB=0 and, therefore, no ad-

ditional magnetic field is generated. In the interaction part
we have to keep track of different scattering processes that
lead to different flows of the running couplings though we
started with isotropic initial conditions. For the scattering of
spin up electrons we find

dJpq
↑

dB
= − ��p − �q�2Jpq

↑ +
1

2�
r

�2��r − h� − ��p + �q��Jpr
�Jqr

�

��1 − 2nf�r�� − �
r,s

�nf�r� + nf�s� − 2nf�r�nf�s��Jrs
�

����p − �q + 2��r − �s + h���Krs,pq
↑ − Kps,rq

↑ �

− ��p − �q − 2��r − �s + h���Krs,qp
↑ − Kqs,rp

↑ �� + O�J4�

�B7�

and for spin down scattering

dJpq
↓

dB
= − ��p − �q�2Jpq

↓ +
1

2�
r

�2��r + h� − ��p + �q��Jrp
�Jrq

�

��1 − 2nf�r�� + �
r,s

�nf�r� + nf�s� − 2nf�r�nf�s��Jrs
�

����p − �q + 2��r − �s + h���Krs,pq
↓ − Krq,ps

↓ �

− ��p − �q − 2��r − �s + h���Krs,qp
↓ − Krp,qs

↓ �� + O�J4� .

�B8�

The spin flip scattering is given by

dJpq
�

dB
= − ��p − �q + h�2Jpq

� +
1

4�
r

�1 − 2nf�r����2�r − ��p + �q�

+ h�Jrq
�Jpr

↑ + �2�r − ��p + �q� − h�Jpr
�Jqr

↓ � +
1

2�
r,s

�nf�r�

+ nf�s� − 2nf�r�nf�s����p − �q + 2��r − �s� + h�

� ��Kpq,rs
↑ − Krq,ps

↑ �Jsr
↑ − �Kpq,rs

↓ − Kps,rq
↓ �Jsr

↓ �

−
1

2�
r,s

�nf�r� + nf�s� − 2nf�r�nf�s����p − �q + 2��r − �s�

− h�Kpq,rs
� Jsr

� + O�J4� . �B9�

The flow of the newly generated interactions is given by

dKpq,rs
↑

dB
= − ��p − �q + �r − �s + h�2Kpq,rs

↑

+
1

4
��p − �q − �r + �s + h�Jpq

� Jrs
↑ + O�J3�

�B10�

for the spin up plus spin flip scattering and

dKpq,rs
↓

dB
= − ��p − �q + �r − �s + h�2Kpq,rs

↓

−
1

4
��p − �q − �r + �s + h�Jpq

� Jrs
↓ + O�J3�

�B11�

for spin down plus spin flip. For double spin flip we find

dKpq,rs
�

dB
= − ��p − �q + �r − �s�2Kpq,rs

�

−
1

2
��p − �q − �r + �s + 2h�Jpq

� Jsr
� + O�J3� .

�B12�

APPENDIX C: TRANSFORMATION OF SxÕy

For completeness we show the transformation of the spin
operators perpendicular to the magnetic field and give the
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result for the corresponding spin-spin correlation function
and the response function. The flow can be described using
one set of running couplings for both x and y-direction since
the choice of the basis in the xy plane is arbitrary. Also the
correlation and the response function are given by single
functions for both directions.

We use the following ansatz for x direction

Sx�B� = hxy�B�Sx + i�
p,q

	pq
↑ �B�:fp↑

† fq↑
:Sy

+ i�
p,q

	pq
↓ �B�:fp↓

† fq↓
:Sy + �

p,q
	pq

z �B�

��: fp↑
† fq↓

:+ :fq↓
† fp↑

:�Sz �C1�

and y direction

Sy�B� = hxy�B�Sy − i�
p,q

	pq
↑ �B�:fp↑

† fq↑
:Sx

− i�
p,q

	pq
↓ �B�:fp↓

† fq↓
:Sx − i�

p,q
	pq

z �B�

��: fp↑
† fq↓

:− :fq↓
† fp↑

:�Sz. �C2�

The flow equation for the decay of the spin operator is given
by

dhxy

dB
=

1

4�
p,q

�nf�p� + nf�q� − 2nf�p�nf�q����p − �q�

��Jpq
↑ 	qp

↑ − Jpq
↓ 	qp

↓ � +
1

2�
p,q

�nf�p� + nf�q�

− 2nf�p�nf�q����p − �q + h�Jpq
� 	pq

z . �C3�

The flow of the newly generated operators is given by

d	pq
↑

dB
=

hxy

2
��p − �q�Jpq

↑ −
1

4�
r

�1 − 2nf�r����p − �r + h�Jpr
�	qr

z

+
1

4�
r

�1 − 2nf�r����q − �r + h�Jqr
�	pr

z �C4�

for the spin up component and

d	pq
↓

dB
= −

hxy

2
��p − �q�Jpq

↓ −
1

4�
r

�1 − 2nf�r��

���r − �q + h�Jrq
�	rp

z +
1

4�
r

�1 − 2nf�r��

���r − �p + h�Jrp
�	rq

z �C5�

for spin down. For the spin-flip component we find

d	pq
z

dB
= −

hxy

2
��p − �q + h�Jpq

� −
1

4�
r

�1 − 2nf�r��

���r − �q + h�Jrq
�	pr

↑ −
1

4�
r

�1 − 2nf�r��

���p − �r + h�Jpr
�	rq

↓ . �C6�

The correlation function is given by the lengthy formula

Cxy��� =
��1 + sgn�h̃��

8 �
p

��	̃
�p,�p+�−h̃

↑ �2 + �	̃
�p,�p+�−h̃

↓ �2�nf��p��1 − nf��p + � − h̃�� +
��1 + sgn�h̃��

8 �
p

��	̃
�p,�p−�−h̃

↑ �2

+ �	̃
�p,�p−�−h̃

↑ �2�nf��p��1 − nf��p − � − h̃�� +
��1 − sgn�h̃��

8 �
p

��	̃
�p,�p+�+h̃

↑ �2 + �	̃
�p,�p+�+h̃

↓ �2�nf��p��1 − nf��p + � + h̃��

+
��1 − sgn�h̃��

8 �
p

��	̃
�p,�p−�+h̃

↑ �2 + �	̃
�p,�p−�+h̃

↓ �2�nf��p��1 − nf��p − � + h̃�� +
�

4 �
p

�	̃�p,�p+�
z �2�nf��p��1 − nf��p + ���

+ nf��p + ���1 − nf��p��� +
�

4 �
p

�	̃�p,�p−�
z �2�nf��p��1 − nf��p − ��� + nf��p − ���1 − nf��p��� . �C7�

For the imaginary part of the response function we find

�xy� ��� =
��1 + sgn�h̃��

8 �
p

��	̃
�p,�p+�−h̃

↑ �2 + �	̃
�p,�p+�−h̃

↓ �2�nf��p��1 − nf��p + � − h̃�� −
��1 + sgn�h̃��

8 �
p

��	̃
�p,�p−�−h̃

↑ �2

+ �	̃
�p,�p−�−h̃

↑ �2�nf��p��1 − nf��p − � − h̃�� +
��1 − sgn�h̃��

8 �
p

��	̃
�p,�p+�+h̃

↑ �2 + �	̃
�p,�p+�+h̃

↓ �2�nf��p��1 − nf��p + � + h̃��

−
��1 − sgn�h̃��

8 �
p

��	̃
�p,�p−�+h̃

↑ �2 + �	̃
�p,�p−�+h̃

↓ �2�nf��p��1 − nf��p − � + h̃�� +
�

4 �
p

�	̃�p,�p+�
z �2�nf��p��1 − nf��p + ���
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− nf��p + ���1 − nf��p��� −
�

4 �
p

�	̃�p,�p−�
z �2�nf��p��1 − nf��p − ��� − nf��p − ���1 − nf��p��� . �C8�

Note that the equations above are identical to the transformation of the Sz operator at zero magnetic field.
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